研究業績 Publication
2024
- Sasaki T, Kushida Y, Norizuki T, Kosako H, Sato K*, Sato M* (2024) ALLO-1- and IKKE-1-dependent positive feedback mechanism promotes the initiation of paternal mitochondrial autophagy. Nat. Commun. 15 (1):1460 [PubMed]
- Kawasaki I, Sugiura K, Sasaki T, Matsuda N, Sato M*, Sato K* (2024) MARC-3, a membrane-associated ubiquitin ligase, is required for fast polyspermy block in Caenorhabditis elegans. Nat. Commun. 15 (1):792. [PubMed]
2022
- Norizuki T, Minamino N, Sato M, Tsukaya H, Ueda T* (2022) Dynamic rearrangement and autophagic degradation of mitochondria during spermiogenesis in the liverwort Marchantia polymorpha. Cell Rep. 39 (11):110975 [PubMed]
2021
- Sasaki T, Sato M* (2021) Degradation of paternal mitochondria via mitophagy. Biochim Biophys Acta Gen Subj 1865 (6):129886 [PubMed]
- Onishi M, Yamano K, Sato M*, Matsuda N*, Okamoto K* (2021) Molecular mechanisms and physiological functions of mitophagy. EMBO J. 40 (3):e104705 [PubMed]
2020
- Yamamoto YH, Kasai A, Omori H, Takino T, Sugihara M, Umemoto T, Hamasaki M, Hatta T, Natsume T, Morimoto RI, Arai R, Waguri S, Sato M, Sato K, Bar-Nun S, Yoshimori T, Noda T*, Nagata K* (2020) ERdj8 governs the size of autophagosomes during the formation process. J. Cell Biol. 219 (8):e201903127 [PubMed]
- 佐藤美由紀 (2020) オートファジーによる父性ミトコンドリアの選択的分解. 医学のあゆみ. 第5土曜特集 オートファジー 272 (9):811
2019
- 佐藤美由紀, 佐藤健 (2019) 受精卵における精子ミトコンドリアの排除機構. 実験医学増刊号. 37:1924-1929
- 佐藤美由紀, 佐藤裕公, 佐藤健 (2019) 初期胚発生におけるリソソーム分解の生理機能と分子メカニズム. 生化学. 91:643-651
2018
- 佐藤美由紀 (2018) ミトコンドリアのオートファジーによる分解とその生理機能. 生体の科学 69: 586-590
- Saegusa K, Sato M*, Morooka N, Hara T, Sato K* (2018) SFT-4/Surf4 control ER export of soluble cargo proteins and participate in ER exit site organization. J. Cell Biol. 217(6):2073-2085 [PubMed]
- Sato M*, Sato K, Tomura K, Kosako H, Sato K* (2018) The autophagy receptor ALLO-1 and the IKKE-1 kinase control clearance of paternal mitochondria in Caenorhabditis elegans. Nat Cell Biol. 20(1):81-91 [PubMed]
- Kurashima K, Sekimoto T, Oda T, Kawabata T, Hanaoka F, Yamashita T* (2018) Polη, a Y-family translesion synthesis polymerase, promotes cellular tolerance of Myc-induced replication stress. J Cell Sci. 131(12):jcs212183 [PubMed]
- Oda T, Sekimoto T, Kurashima K, Fujimoto M, Nakai A, Yamashita T* (2018) Acute HSF1 depletion induces cellular senescence through the MDM2-p53-p21 pathway in human diploid fibroblasts. J Cell Sci. 131(9):jcs210724 [PubMed]
2017
- Sato K*, Sato M (2017) Multiple ways to prevent transmission of paternal mitochondrial DNA for maternal inheritance in animals. J Biochem. 162(4):247-253 [PubMed]
- 佐藤健,佐藤美由紀 (2017) アロファジー:父性オルガネラを分解する新たなオートファジーと母性遺伝. 実験医学. 35:1812-1817
- Sato M*, Sato K (2017) Monitoring of Paternal Mitochondrial Degradation in Caenorhabditis elegans. Methods Mol Biol. 1759:133-140 [PubMed]
- 佐藤美由紀, 佐藤健 (2017) ミトコンドリアDNAの母性遺伝とオートファジー. 最新医学. 72(2):211-217
2016
- Sakaguchi A, Sato M, Sato K* (2016) REI-1, a Novel Rab11 GEF with a SH3BP5 domain. Commun Integr Biol. 15;9(5):e1208325 [PubMed]
- Sato K*, Sakaguchi A, Sato M (2016) REI/SH3BP5 protein family: New GEFs for Rab11. Cell Cycle. 15(6):767-769 [PubMed]
2015
- Zhang H*, Chang JT, Guo B, Hansen M, Jia K, Kovács AL, Kumsta C, Lapierre LR, Legouis R, Lin L, Lu Q, Meléndez A, O'Rourke EJ, Sato K, Sato M, Wang X, Wu F (2015) Guidelines for monitoring autophagy in Caenorhabditis elegans. Autophagy 11(1):9-27 [PubMed]
- Sakaguchi A, Sato M, Sato K, Gengyo-Ando K, Yorimitsu T, Nakai J, Hara T, Sato K, Sato K* (2015) REI-1 Is a Guanine Nucleotide Exchange Factor Regulating RAB-11 Localization and Function in C. elegans Embryos. Dev Cell. 35(2):211-221 [PubMed]
- Sekimoto T, Oda T, Kurashima K, Hanaoka F, Yamashita T* (2015) Both high-fidelity replicative and low-fidelity Y-family polymerases are involved in DNA rereplication. Mol Cell Biol. 35(4):699-715 [PubMed]
2014
- Saegusa K, Sato M, Sato K, Nakajima-Shimada J, Harada A*, Sato K* (2014) C. elegans chaperonin CCT/TRiC is required for actin and tubulin biogenesis and microvillus formation in intestinal epithelial cells. Mol Biol Cell. 15;25(20):3095-104 [PubMed]
- Yamasaki A, Hara T, Maejima I, Sato M, Sato K, Sato K* (2014) Rer1p regulates the ER retention of immature rhodopsin and modulates its intracellular trafficking. Sci Rep. 6 (4):5973 [PubMed]
- 佐藤美由紀,佐藤健(2014)精子由来ミトコンドリアのオートファジーによる分解.医学のあゆみ 250:479-482
- Miyuki Sato*, Ryosuke Konuma, Katsuya Sato, Kotone Tomura, and Ken Sato* (2014) Fertilization-induced K63-linked ubiquitylation mediates clearance of maternal membrane proteins. Development 141(6):1324-1331 [PubMed]
- Ken Sato*, Ann Norris, Miyuki Sato, Barth D Grant* (2014) C. elegans as a model for membrane traffic. WormBook, ed. The C. elegans Research Community, doi:10.1895/wormbook.1.77.2 [PubMed]
- 佐藤健,佐藤美由紀 (2014) 受精における精子ミトコンドリアの運命と母性遺伝. 細胞工学. 33(4):414-419
2013
- Miyuki Sato and Ken Sato* (2013) Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. BBA Mol. Cell Res. 833(8):1979-1984 [PubMed]
- Miyuki Sato and Ken Sato* (2013) Dynamic regulation of Autophagy and Endocytosis for Cell Remodeling During Early Development. Traffic. 14(5):479-486 [PubMed]
- 佐藤美由紀,佐藤健 (2013) ミトコンドリアDNAの母性遺伝を制御する多様な分子機. 生化学. 85(5):357-362
- 佐藤美由紀 (2013) 受精卵における細胞内リモデリングのメカニズム.日本女性科学者の会 学術誌. 13:9-13
2012
- Miyuki Sato and Ken Sato* (2012) Maternal inheritance of mitochondrial DNA: Degradation of paternal mitochondria by allogeneic organelle autophagy, allophagy. Autophagy. 8(3):424-5 [PubMed]
- 佐藤美由紀,佐藤健 (2012) 線虫受精卵における父性ミトコンドリアのオートファジーによる選択的分解〜ミトコンドリアDNAの母性遺伝のメカニズム〜. 実験医学. 30:614-618
- 佐藤健,佐藤美由紀 (2012) 精子由来ミトコンドリアは受精依存的に誘導されるオートファジーによって選択的に分解される.細胞工学. 31:590-591
- 佐藤美由紀,佐藤健 (2012) ミトコンドリアゲノムの母性遺伝のメカニズム.化学と生物. 50:479-480
- Yamashita T*, Oda T, Sekimoto T (2012) Translesion DNA synthesis and Hsp90. Genes and Environment. 34(2):89-93
2011
- Miyuki Sato and Ken Sato* (2011) Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science. 334(6059):1141-1144 [PubMed]
*速報に掲載され,”This week in Science”にも取り上げられました
- Miyuki Sato, Keiko Saegusa, Katsuya Sato, Taichi Hara and Ken Sato* (2011) Caenorhabditis elegans SNAP-29 is required for organellar integrity of the endomembrane system and general exocytosis in intestinal epithelial cells. Mol Biol Cell. 22(14):2579-2587 [PubMed]
*Highlighted Articlesに選ばれました
- Pozo FM, Oda T, Sekimoto T, Murakumo Y, Masutani C, Hanaoka F, Yamashita T* (2011) Molecular chaperone Hsp90 regulates REV1-mediated mutagenesis. Mol Cell Biol. 31(16):3396-3409 [PubMed]
2010
- Sekimoto T, Oda T, Pozo FM, Murakumo Y, Masutani C, Hanaoka F, Yamashita T* (2010) The molecular chaperone Hsp90 regulates accumulation of DNA polymerase η at replication stalling sites in UV-irradiated cells. Mol Cell. 37(1):79-89 [PubMed]
2009
- *Ken Sato, Glen G.Ernstrom, Shigeki Watanabe, Robby M.Weimer, Chin-Hsiung Chen, Miyuki Sato, Ayesha Siddiqui, Erik M.Jorgensen, and *Barth D.Grant. (2009) Differential requirements for clathrin in receptor-mediated endocytosis and maintenance of synaptic vesicle pools. Proc. Natl. Acad. Sci. USA. 106(4):1139-1144 [PubMed]
2008
- Miyuki Sato, Barth Grant, Akihiro Harada, and Ken Sato* (2008) Rab11 is required for synchronous secretion of chondroitin proteoglycans after fertilization in Caenorhabditis elegans. J. Cell Sci. 121;3177-3186 [PubMed]
*表紙に選ばれました
- Miyuki Sato, Ken Sato, Willisa Liou, Saumya Pant, Akihiro Harada, and Barth Grant* (2008) Regulation of endocytic recycling by C. elegans Rab35 and its regulator RME-4, a coated-pit protein. EMBO J. 27:1183-1196 [PubMed]
- 佐藤美由紀,佐藤健 (2008) 線虫 C. elegans におけるメンブレントラフィック.蛋白質核酸酵素 増刊号 ”メンブレントラフィックの奔流 分子から細胞,そして個体へ”. 53:2188-2219
- Tungjitwitayakul J, Singtripop T, Nettagul A, Oda Y, Tatun N, Sekimoto T, Sakurai S* (2008) Identification, characterization, and developmental regulation of two storage proteins in the bamboo borer Omphisa fuscidentalis. J Insect Physiol 54(1):62-76 [PubMed]
2007
- Takashi Sato, Sotaro Mushiake, Yukio Kato, Ken Sato, Miyuki Sato, Yasuo Uchiyama, Naoki Takeda, Keiichi Ozono, Kazunori Miki, Yoshiyuki Kubo, Akira Tsuji, Reiko Harada, and Akihiro Harada* (2007) The Rab8 GTPase regulates apical protein localization in intestinal cells. rab8 deficiency leads to mislocalization of apical proteins and microvillus inclusion. Nature. 448:366-369 [PubMed]
- 佐藤健,佐藤美由紀 (2007) 細胞機能を支える巧みな物流管理システム. ”タンパク質の一生集中マスター”. 68ー75
- Yamashita T*, Oda T, Sekimoto T (2007) Hsp90 and the Fanconi anemia pathway: a molecular link between protein quality control and the DNA damage response. Cell cycle 6(18):2232-2235 [PubMed]
- Sekimoto T, Iwami M, Sakurai S* (2007) 20-Hydroxyecdysone regulation of two isoforms of the ETS transcription factor E74 gene in programmed cell death in the silkworm anterior silk gland. Insect Mol Biol 16(5):581-590. [PubMed]
2006
- Ken Sato, Miyuki Sato, Anjon Audhya, Karen Oegema, Peter Schweinsberg, Barth Grant* (2006) Dynamic regulation of caveolin-1 trafficking in the germ line and embryo of Caenorhabditis elegans. Mol. Biol. Cell. 17(7):3085-3094 [PubMed]
- Barth Grant* and Miyuki Sato (2006) Intracellular trafficking. WormBook, ed. The C. elegans Research Community, doi/10.1895/wormbook.1.77.1 [PubMed]
- Sekimoto T, Iwami M, Sakurai S (2006) Coordinate responses of transcription factors to ecdysone during programmed cell death in the anterior silk gland of the silkworm, Bombyx mori. Insect Mol Biol 15(3):281-292.[PubMed]
2005
- Miyuki Sato, Ken Sato, Paul Fonarev, Chih-jen Huang, Willisa Liou, Barth Grant* (2005) Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit. Nature Cell Biology. 7:559-569 [PubMed]
2004
- Miyuki Sato, Ken Sato, and Akihiko Nakano* (2004) Endoplasmic Reticulum Quality Control of Unassembled Iron Transporter Depends on Rer1p-mediated Retrieval from the Golgi. Mol. Biol. Cell. 15:1417-1424 [PubMed]
2003
- Ken Sato*, Miyuki Sato and Akihiko Nakano (2003) Rer1p, a retrieval receptor for ER membrane proteins, recognizes transmembrane domains in multiple modes. Mol Biol. Cell. 14:3605-3616 [PubMed]
2002
- Miyuki Sato, Ken Sato and Akihiko Nakano* (2002) Evidence for the intimate relationship between vesicle budding from the ER and the unfolded protein response. Biochem. Biophys. Res. Commun. 296:560-567 [PubMed]
2001
- Miyuki Sato, Singo Fujisaki, Ken Sato, Yukinobu Nishimura and Akihiko Nakano* (2001) Yeast Saccharomyces cerevisiae has two cis-prenyltransferases with different properties and localizations. Implication for their distinct physiological roles in dolichol synthesis. Genes Cells. 6:495-506 [PubMed]
- Ken Sato, Miyuki Sato, and Akihiko Nakano* (2001) Rer1p, a retrieval receptor for endoplasmic reticulum membrane proteins, is dynamically localized to the Golgi apparatus by coatomer. J. Cell Biol. 152:935-944 [PubMed]
2000
- 佐藤美由紀,中野明彦 (2000) ドリコールの合成とその新しい機能. 化学と生物. 38:145-147
1999
- Miyuki Sato, Ken Sato, Shuh-ichi Nishikawa, Aiko Hirata, Jun-ichi Kato and Akihiko Nakano* (1999) The yeast RER2 gene, identified by ER protein localization mutations, encodes cis-prenyltransferase, a key enzyme in the dolichol synthesis. Mol. Cell. Biol. 19:471-483 [PubMed]
- Jun-ichi Kato, Singo Fujisaki, Ken-ichi Nakajima, Yukinobu Nishimura, Miyuki Sato, and Akihiko Nakano* (1999) The Escherichia coli homologue of yeast Rer2, a key enzyme of dolichol synthasis, is essential for carrier lipid formation in bacterial cell wall synthesis. J. Bacteriol. 181:2733-2738 [PubMed]
1997
- Ken Sato, Miyuki Sato and Akihiko Nakano* (1997) Rer1p as common machinery for the endoplasmic reticulum localization of membrane proteins. Proc. Natl. Acad. Sci. USA. 94:9693-9698 [PubMed]
1996
- Miyuki Sato, Ken Sato and Akihiko Nakano* (1996) Endoplasmic reticulum localization of Sec12p is achieved by two mechanisms: Rer1p-dependent retrieval that requires the transmembrane domain and Rer1p-independent retention that involves the cytoplasmic domain. J. Cell Biol. 134:279-293 [PubMed]